

Artem Kaznatcheev

Department of Computer Science, University of Oxford Department of Translational Hematology & Oncology Research, Cleveland Clinic egtheory.wordpress.com

Natural Selection:

Struggle for Existence as the constraint that powers evolution

Machines and Nature:

from Steam Engines to Computers

Algorithmic Biology:

Computational Complexity as the constraint that powers open-ended evolution

data crunching

Use computer...

- ... control experiments
- ... visualize data

simulate experiments

abstraction and multiple realizability

algorithms

genetic algorithms

Theorems, lemmas, and proofs

computer programs

Computational-X

build artificial biologies

bioinformatics

conceptual analysis

Practical skills from CS

applied to the outputs of field X

Mathematical techniques from CS

Algorithmic-X

applied to the conceptual grounding of field X

Natural Selection:

Struggle for Existence as the constraint that powers evolution

Machines and Nature: from Steam Engines to Computers

Algorithmic Biology: Computational Complexity as the constraint that powers open-ended evolution

New Technology in the time of Darwin and Wallace

Robert Bakewell

Thomas Coke

Bakewell introduced systematic selective breeding

Malthus and the Struggle for Existence

Natural selection

"the action of this principle is exactly like that of the centrifugal governor of the steam engine"

Alfred Russel Wallace

Natural selection: walk up a fitness landscape

Can natural selection produce new species?

Darwin and Wallace turn to geology:

the world is constantly changing and this geological change gets reflected in biological world

Can natural selection produce new species?

Darwin and Wallace turn to geology:

the world is constantly changing and this geological change gets reflected in biological world

But what about static worlds?

Richard Lenski

Natural Selection: Struggle for Existence as the constraint that powers evolution

Machines and Nature: from Steam Engines to Computers

Algorithmic Biology: Computational Complexity as the constraint that powers open-ended evolution

Machines and the Conservation of Energy

"What is the design that enables a machine to produce useful work for a perpetual time?"

Perpetual Motion Machines

VS.

Conservation of Energy

Noether's Theorem (1918)

Is thermodynamics about steam engines?

Algorithms and the Complexity of Computation

Entscheidungsproblem

VS.

Complexity of Computation

"What is the procedure that determines for each logical expression for which domains it is valid or satisfiable?"

- Hilbert & Ackermann (1928)

Is theoretical computer science about computers?

Easy: solvable in polynomial time

Hard: general solution requires super-polynomial time

Evolution and the Constraint of Computation

"In a rugged field of this character selection will easily

carry the species to the nearest peak"

- Wright (1932)

Kaznatcheev, A. (2019)

Computational complexity as an ultimate constraint on evolution **Genetics**, 302000.2019

Natural Selection: Struggle for Existence as the constraint that powers evolution

> Machines and Nature: from Steam Engines to Computers

Algorithmic Biology:

Computational Complexity as the constraint that powers open-ended evolution

Fitness Landscapes and Constraints

Some mapping from genotypes (or phenotypes) to fitness.

+ an idea of which genotypes (or phenotypes) are near each other and which are not.

A genotype is a **local fitness peak** if all nearby genotypes are of the same or lower fitness

A **constraint** is anything that prevents evolution from finding a local fitness peak

Algorithms and Problems

Different population structures, developmental structures, trait co-variants, standing variation, etc... can produce different evolutionary dynamics and correspond to **different algorithms**

Families of different fitness landscapes correspond to **different problems**

proximal constraints

ultimate constraints

From Constraints to Positive Results: Costly Learning

"Characters individually acquired by members of a group of organisms may eventually, under the influence of selection, be reenforced or replaced by similar hereditary characters"

- Simpson (1958)

Baldwin effect:

- 1. Organisms adapt to the environment individually.
- 2. Genetic factors produce hereditary characteristics similar to the ones made available by individual adaptation.
- 3. These hereditary traits are favoured by natural selection and spread in the population.

From Constraints to Positive Results: Cooperation

Unbounded Growth in Fitness & Open-Ended Evolution

Thank you!

References

Wright, S. (1932). The roles of mutation, inbreeding, crossbreeding, and selection in evolution. *Proceedings of the Sixth International Congress of Genetics*, 356-366

Simpson, G.G. (1953). The baldwin effect. *Evolution*, 7(2), 110-117.

Wiser, M.J., Ribeck, N., & Lenski, R.E. (2013). Long-term dynamics of adaptation in asexual populations. *Science*, *342*(6164), 1364-1367.

Hammarlund, S.P., Connelly, B.D., Dickinson, K.J., & Kerr, B. (2016). The evolution of cooperation by the Hankshaw effect. *Evolution*, 70(6), 1376-1385.

Kaznatcheev, A. (2019) Computational complexity as an ultimate constraint on evolution. *Genetics*, 212(1): 245-265.