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Natural Selection:  
Struggle for Existence as the constraint that powers 

evolution


Machines and Nature:  
from Steam Engines to Computers


Algorithmic Biology:  
Computational Complexity as the constraint that powers 

open-ended evolution




Use computer… 
… control experiments 
… visualize data

Practical skills from CS  
applied to the  

outputs of field X

Mathematical techniques from CS  
applied to the  

conceptual grounding of field X

Theorems, 
lemmas, and 
proofs

conceptual analysis

abstraction  
and  

multiple realizability

algorithms

computer programs

simulate experiments

data crunching

Computational-X Algorithmic-X

bioinformatics

genetic algorithms

build artificial biologies
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New Technology in the time of Darwin and Wallace

Robert Bakewell Thomas Coke



Bakewell introduced systematic selective breeding



Could a similar algorithm happen in nature?

?

Charles Darwin



Malthus and the Struggle for Existence

Asymptotic analysis:  
big-O of production versus 

little-Omega of population n << 2^n



Natural selection “the action of this principle is exactly like that of 
the centrifugal governor of the steam engine”

Alfred Russel Wallace



Natural selection: walk up a fitness landscape



Can natural selection produce new species?

Darwin and Wallace turn to geology:  
the world is constantly changing and this geological change 
gets reflected in biological world



Can natural selection produce new species?

  

Wiser, M. J., Ribeck, N., & Lenski, R. E. (2013). 
Long-Term Dynamics of Adaptation in Asexual Populations. 
Science, 342(6164), 1364-1367.

YES: s = poly(n,1/T)

NO: s = exp(-T)poly(n) 

LTEE: s ~ a/T

LTEE: s ~ 1/T

But what about static worlds?

Darwin and Wallace turn to geology:  
the world is constantly changing and this geological change 
gets reflected in biological world

Richard Lenski
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Machines and the Conservation of Energy

Perpetual Motion Machines

Conservation of Energy

vs.

“What is the design that enables a machine to produce 
useful work for a perpetual time?”

1712 1720 1769 1877

Noether’s Theorem (1918)Is thermodynamics about steam engines?



Entscheidungsproblem

Complexity of Computation

vs.

Algorithms and the Complexity of Computation

“What is the procedure that determines for each logical 
expression for which domains it is valid or satisfiable?”

- Hilbert & Ackermann (1928)

Easy: solvable in polynomial time


Hard: general solution requires super-polynomial time

Is theoretical computer science about computers?



Local fitness peaks

vs.

“In a rugged field of this character selection will easily 
carry the species to the nearest peak”

- Wright (1932)

Constraint of Computation

Evolution and the Constraint of Computation

Kaznatcheev, A. (2019) 

Computational complexity as an ultimate constraint on evolution

Genetics, 302000.2019
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Fitness Landscapes and Constraints
Some mapping from genotypes (or phenotypes) to fitness.  

+ an idea of which genotypes (or phenotypes) are near 
each other and which are not.

A genotype is a local fitness peak if all nearby 
genotypes are of the same or lower fitness

A constraint is anything that prevents evolution 
from finding a local fitness peak

Algorithms and Problems
Different population structures, developmental structures, 
trait co-variants, standing variation, etc…  

can produce different evolutionary dynamics and 
correspond to different algorithms

Families of different fitness landscapes  
correspond to different problems

proximal constraints

ultimate constraints
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Max allowed 
epistasis type Hardness of reaching local optima
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magnitude
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Hard for SSWM with random fitter mutant or fittest mutant dynamics

rugged

reciprocal sign

Hard for all SSWM dynamics: initial genotypes with all adaptive paths 
of exponential lengths


Hard for all evolutionary dynamics


Easy for finding approximate local peaks with moderate optimality 
gap: selection coefficient can drop-off as power law 

Hard for approximate local peaks with small optimality gap: selection 
coefficient cannot drop-off exponentially
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“Characters individually acquired by members of a group of 
organisms may eventually, under the influence of selection, 
be reenforced or replaced by similar hereditary characters”

- Simpson (1958)

Baldwin effect: 
1. Organisms adapt to the environment individually.

2. Genetic factors produce hereditary characteristics similar to the ones made available 

by individual adaptation.

3. These hereditary traits are favoured by natural selection and spread in the population.

From Constraints to Positive Results: Costly Learning
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From Constraints to Positive Results: Cooperation

Patch structured population 

can maintain cooperation by 

hitchhiking on adaptive mutations 

… but this effect can only go until we reach a fitness peak
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Wiser, M. J., Ribeck, N., & Lenski, R. E. (2013). 
Long-Term Dynamics of Adaptation in Asexual Populations. 
Science, 342(6164), 1364-1367.

YES: s = poly(n,1/T)

NO: s = exp(-T)poly(n) 

LTEE: s ~ a/T

LTEE: s ~ 1/T

YES: s ~ poly(n,1/T) 
NO: s ~ exp(-T)poly(n)

Unbounded Growth in Fitness & Open-Ended Evolution



Thank you!
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